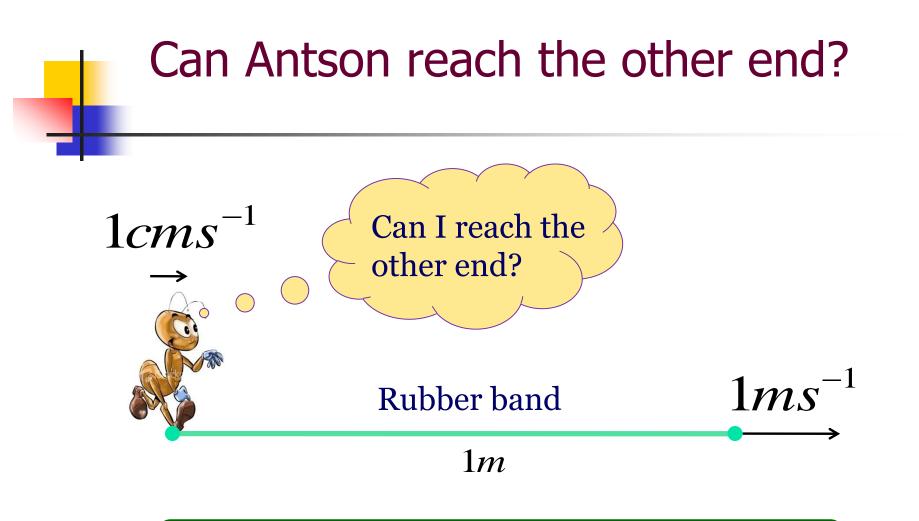


Introduction to Differential Equations

Lau Chi Hin The Chinese University of Hong Kong



Can Antson reach the other end?

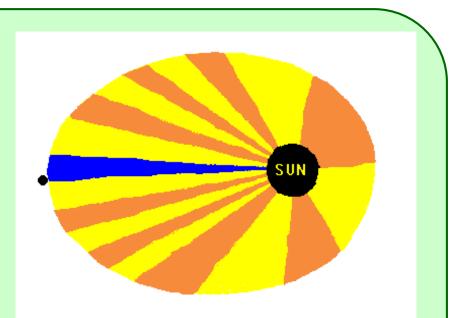
Gottfried Wilhelm Leibniz (1646-1716)

- German mathematician and philosopher
- Credited for, along with Newton, the discovery of calculus
- Invented the use of \int and d.

Isaac Newton (1643-1727)

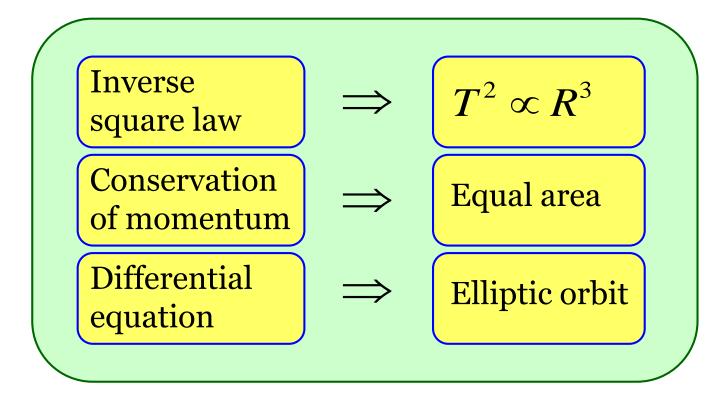
Kepler's laws of planetary motion

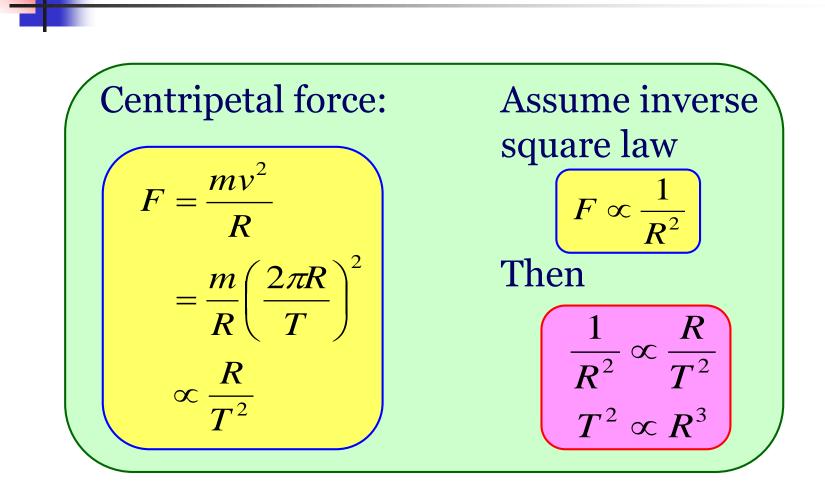
- 1. The orbit is an ellipse with the sun at one of the foci.
- 2. A line joining a planet and the sun sweeps out equal areas in equal time.



3. The squares of the orbital periods are directly proportional to the cubes of the semi-major axes.

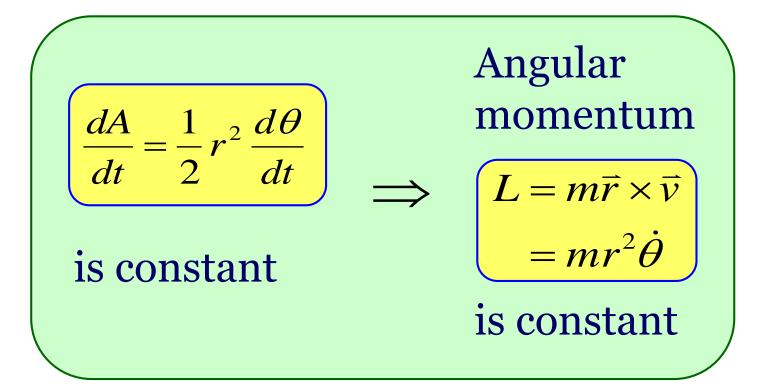
Kepler's laws of planetary motion





Inverse square law

Conservation of angular momentum



Elliptic orbit Newton second law: $\frac{F}{-} = \vec{a}$ m $-\frac{GM}{r^2}\hat{e}_r = (\ddot{r} - r\dot{\theta}^2)\hat{e}_r + (r\ddot{\theta} + 2\dot{r}\dot{\theta})\hat{e}_{\theta}$ $\Rightarrow \begin{cases} \ddot{r} - r\dot{\theta}^2 = -\frac{GM}{r^2} \\ r\ddot{\theta} + 2\dot{r}\dot{\theta} = 0 \end{cases}$

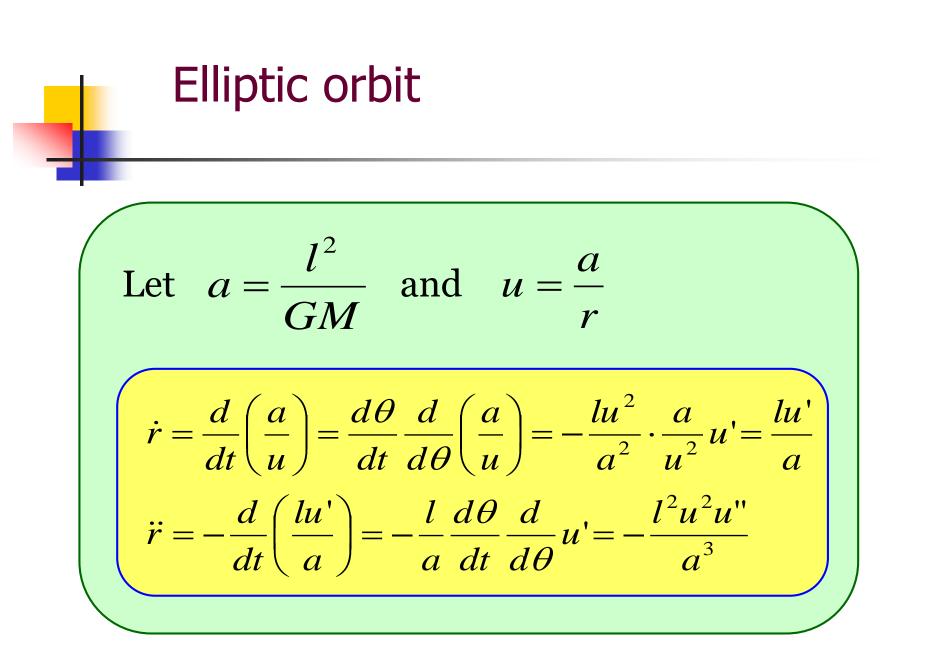
Elliptic orbit

 $r\ddot{\theta} + 2\dot{r}\dot{\theta} = 0$ $r^2\ddot{\theta} + 2r\dot{r}\dot{\theta} = 0$ $\frac{d}{dt} \left(r^2 \dot{\theta} \right) = 0$ $r^2 \dot{\theta} = l$

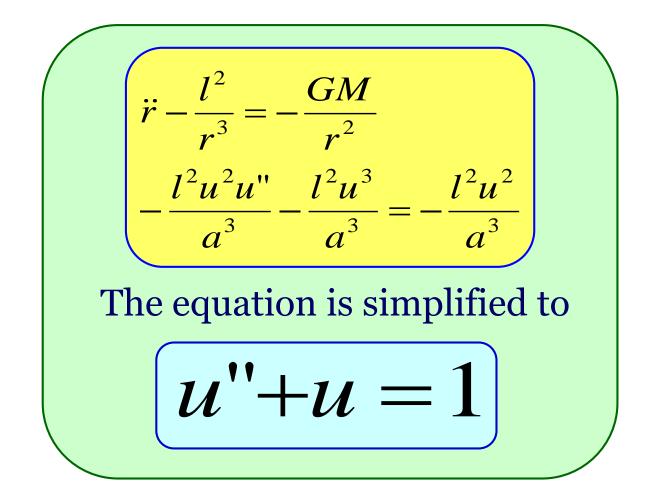
In fact, this is known already from conservation of angular momentum.

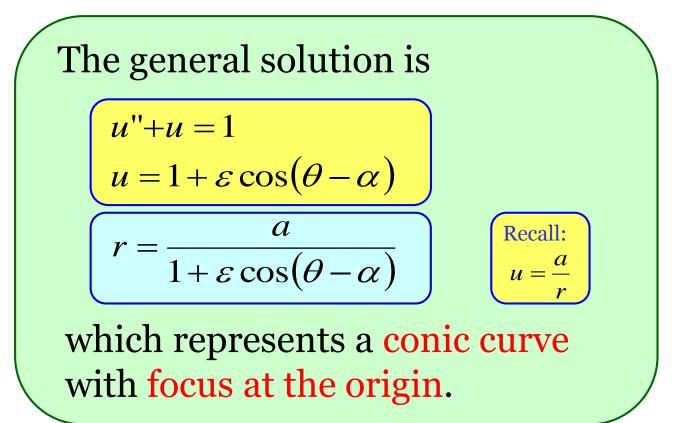
Elliptic orbit

GM $=\ddot{r}-r\dot{ heta}^2$ r^2 $\left(\frac{l}{r^2}\right)^2 = -\frac{GM}{r^2}$ *ï*− Therefore we need to solve GM r **v**³



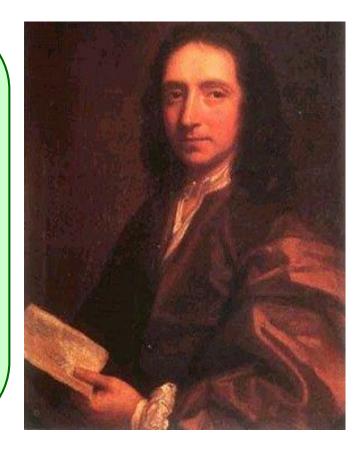
Elliptic orbit

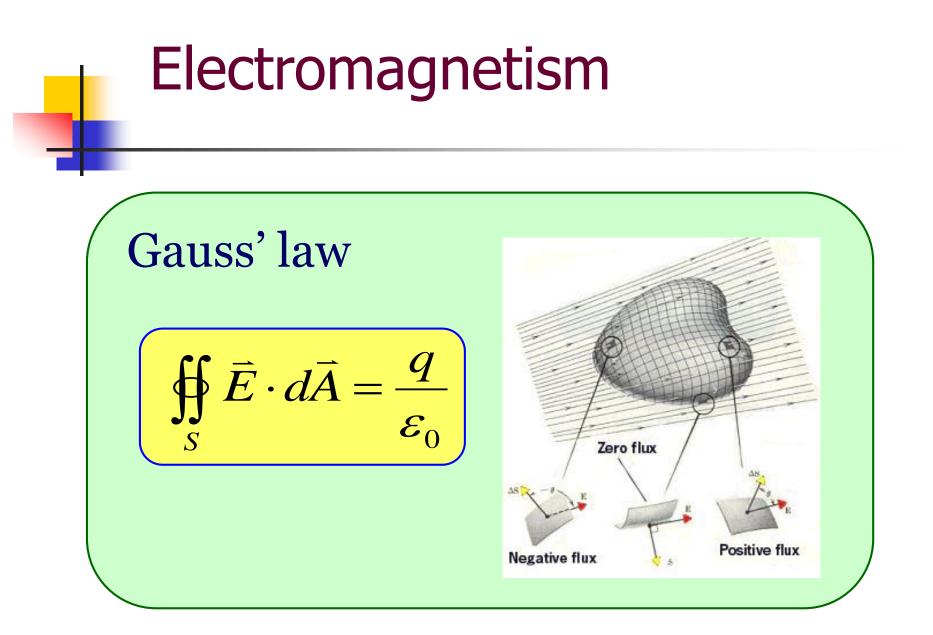


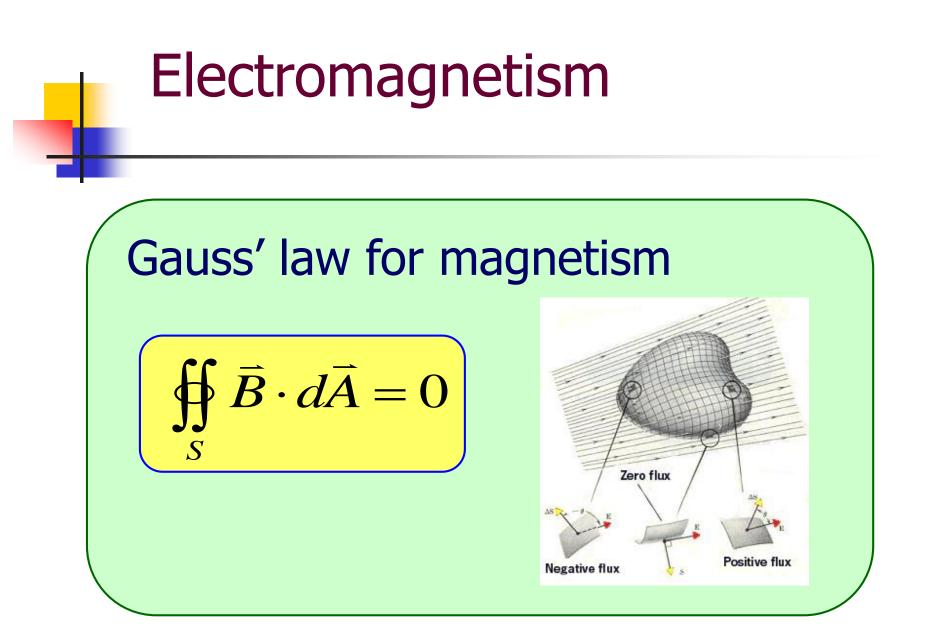


Edmond Halley (1656-1742)

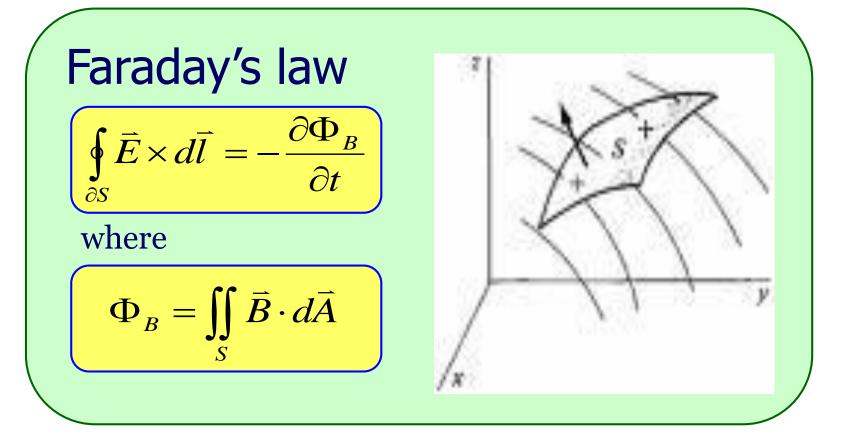
- Claim that the comet sightings of 1456, 1531, 1607 and 1682 related to the same comet.
- Predicted that the comet would return in 1758.
- The Halley's comet was seen again on 25th Dec 1758.

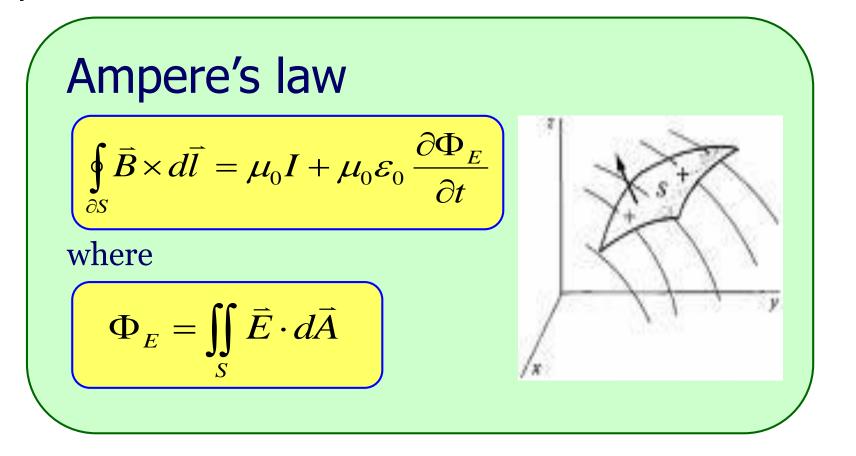






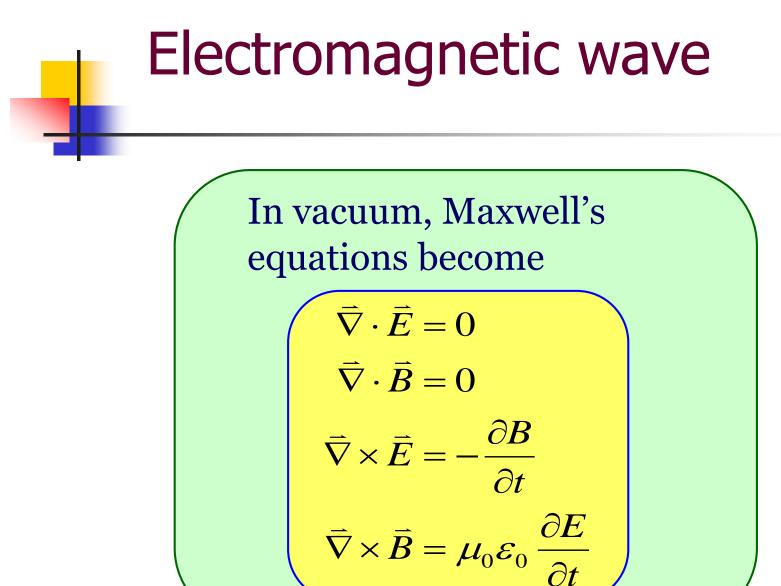
Electromagnetism



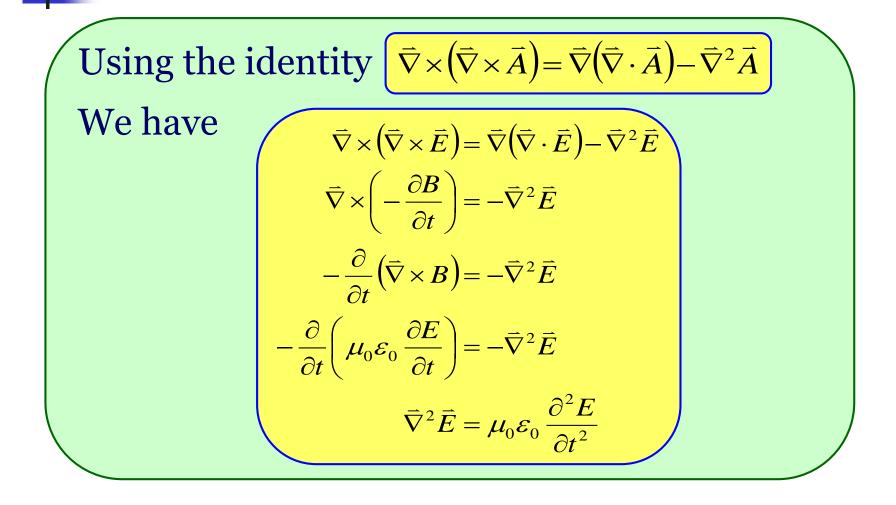


Maxwell's equations

Name	Integral form	Differential form
Gauss' law	$\oint_{S} \vec{E} \cdot d\vec{A} = \frac{q}{\varepsilon_0}$	$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$
Gauss' law	$\oint_{S} \vec{B} \cdot d\vec{A} = 0$	$\vec{\nabla}\cdot\vec{B}=0$
Faraday's law	$\oint_{\partial S} \vec{E} \times d\vec{l} = -\frac{\partial \Phi_B}{\partial t}$	$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$
Ampere's law	$\oint_{\partial S} \vec{B} \times d\vec{l} = \mu_0 I + \mu_0 \varepsilon_0 \frac{\partial \Phi_E}{\partial t}$	$\vec{\nabla} \times \vec{B} = \mu_0 \vec{j} + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}$



Electromagnetic wave



Electromagnetic wave

$$\vec{\nabla}^2 \vec{E} = \mu_0 \varepsilon_0 \frac{\partial^2 E}{\partial t^2}$$

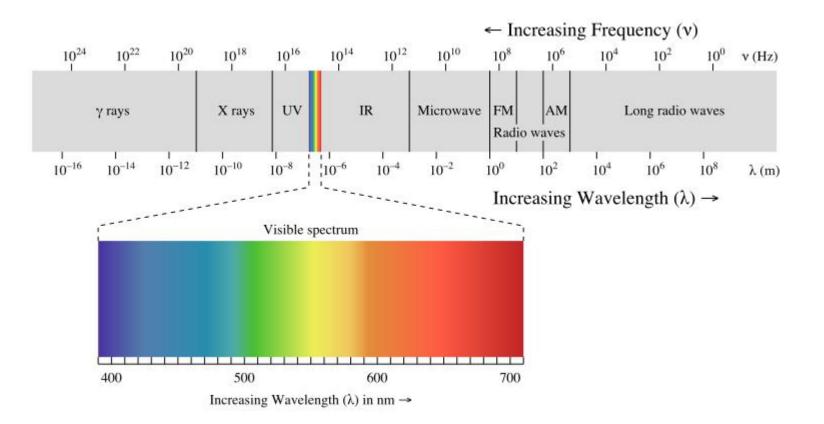
The above equation shows the existence of wave of oscillating electric and magnetic fields which travel at a speed

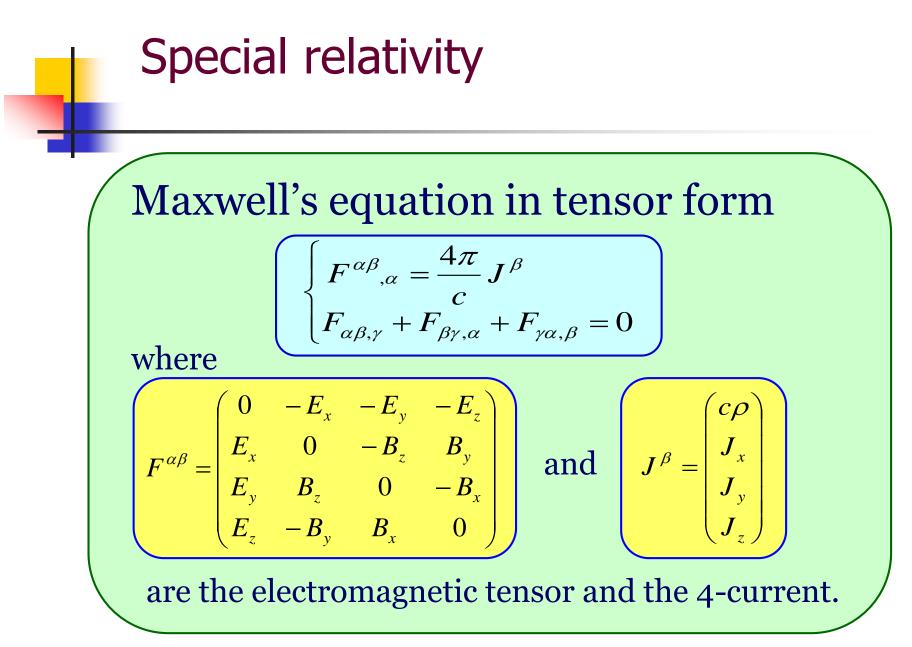
$$\frac{1}{\sqrt{\mu_0 \varepsilon_0}} \approx 300,000 \, km s^{-1}$$

which is very close to the speed of light.

Maxwell then claimed that light is in fact electromagnetic wave.

Electromagnetic wave





General relativity

According to Einstein field equation, gravity is described as a curved space time caused by matter and energy.

$$R_{\alpha\beta} - \frac{1}{2} Rg_{\alpha\beta} = -\frac{8\pi G}{c^4} T_{\alpha\beta}$$

 $R_{\alpha\beta}$: Ricci tensor

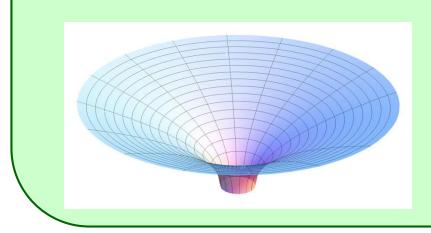
- *R* : scalar curvature
- $g_{\alpha\beta}$: metric tensor

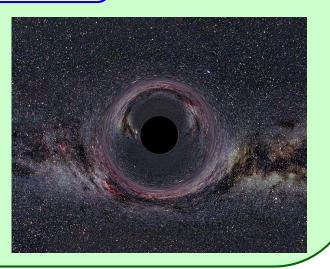
 $T_{\alpha\beta}$: energy-momentum-stress tensor

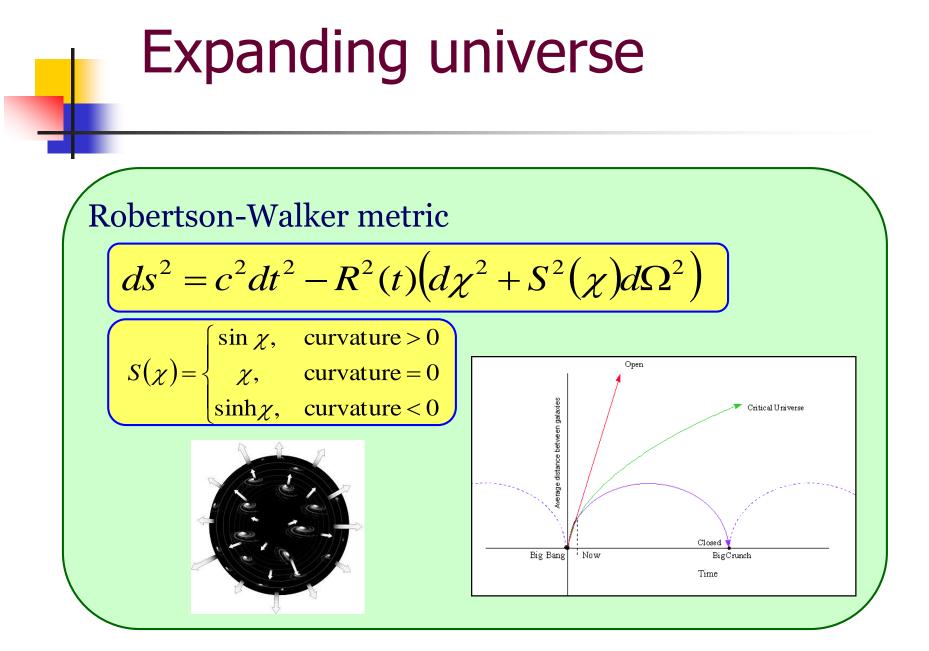
Schwarzschild black hole

A black hole with no change or angular momentum. Schwarzschild metric:

$$ds^{2} = -\left(1 - \frac{2GM}{r}\right)dt^{2} + \left(1 - \frac{2GM}{r}\right)^{-1}dr^{2} + r^{2}d\Omega^{2}$$







Schrödinger equation

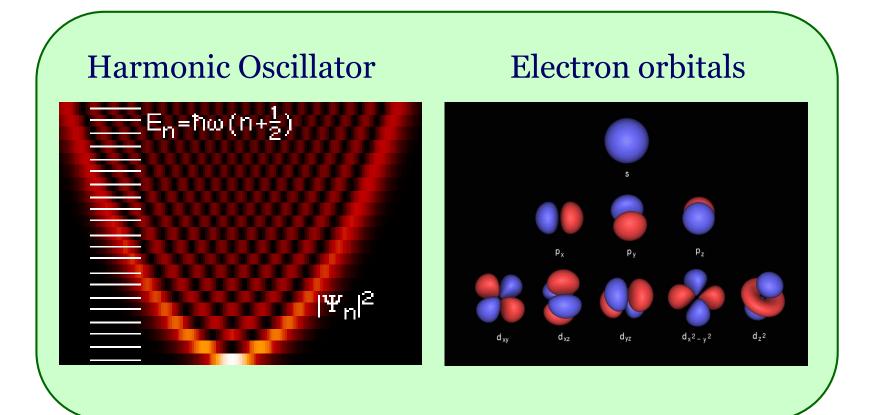
In quantum mechanics, particles are described by wave function satisfying

$$i\frac{h}{2\pi}\frac{d\psi}{dt} = H\psi$$

where

- h: Planck's constant
- Ψ : wave function
- H: Hamiltonian operator

Schrödinger equation



Black-Scholes' equation

Black-Scholes model the price of an option by

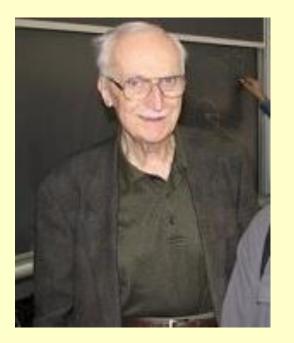
$$\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + rS \frac{\partial V}{\partial S} - rV = 0$$

where V : price of the option

- *S* : price of the underlying instrument
- σ : volatility
- *r* : constant interest rate

Calabi's conjecture

Let $(M, g_{i\bar{i}})$ be a compact Kähler manifold. Any closed (1,1)-form which represents the first Chern class of *M* is the Ricci form of a metric determines the same cohomology class as $g_{i\bar{i}}$.



Calabi's conjecture

Equivalent to the existence of solution of the following complex Monge-Ampère equation

$$\det\left(g_{i\bar{j}} + \frac{\partial^2 \varphi}{\partial z_i \partial \bar{z}_j}\right) \det\left(g_{i\bar{j}}\right)^{-1} = \exp(F)$$

where

$$\int_{M} \exp(F) = Vol(M)$$

Proved by Yau Shing Tung in 1976.

Navier-Stokes equation

Navier-Stokes Equation describe the motion of viscous fluid.

$$\rho \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) = -\nabla \mathbf{p} + \mu \Delta \mathbf{v} + \mathbf{f}$$

where

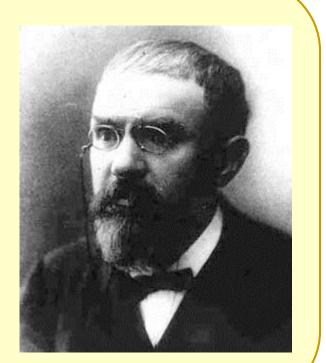
- **v** : velocity
- ρ : density
- *p* : pressure
- **f** : external force

The continuity equation reads

$$\nabla \cdot \mathbf{v} = \mathbf{0}$$

Poincaré's conjecture

Every compact simply-connected 3 dimensional manifold is homeomorphic to the 3 dimensional sphere.



Generalized Poincaré's conjecture

If a compact *n* dimensional manifold is homotopic to the *n* dimensional sphere, then it is homeomorphic to the *n* dimensional sphere.

Generalized Poincaré's conjecture

Dimension	Solver	Year	Field's Medal
1 or 2	Classical		
5 or above	Stephen Smale	1960	1966
4	Michael Freeman	1982	1986
3	Grigori Perelman	2003	2006

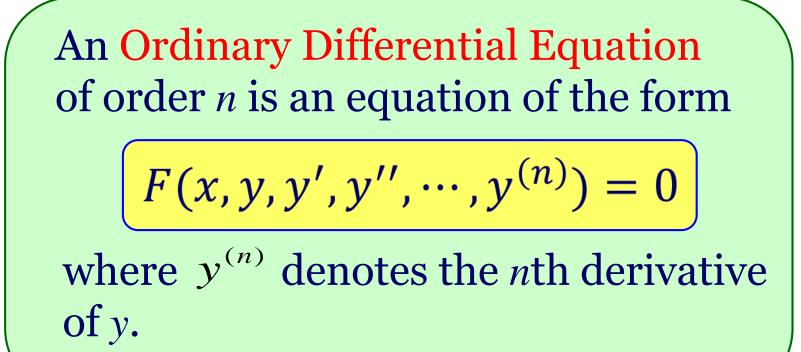
Ricci flow

Proved by Perelman by using Ricci flow defined by Hamilton.

$$\frac{\partial g_{ij}}{\partial t} = -2R_{ij}$$

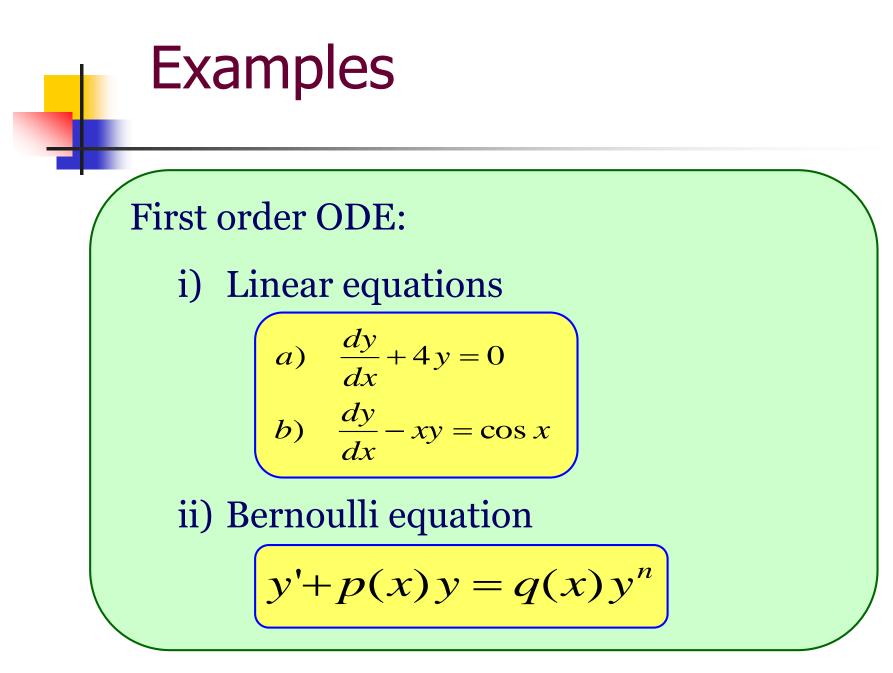
Perelman declined both the Fields medal and the Clay Millennium Prize.

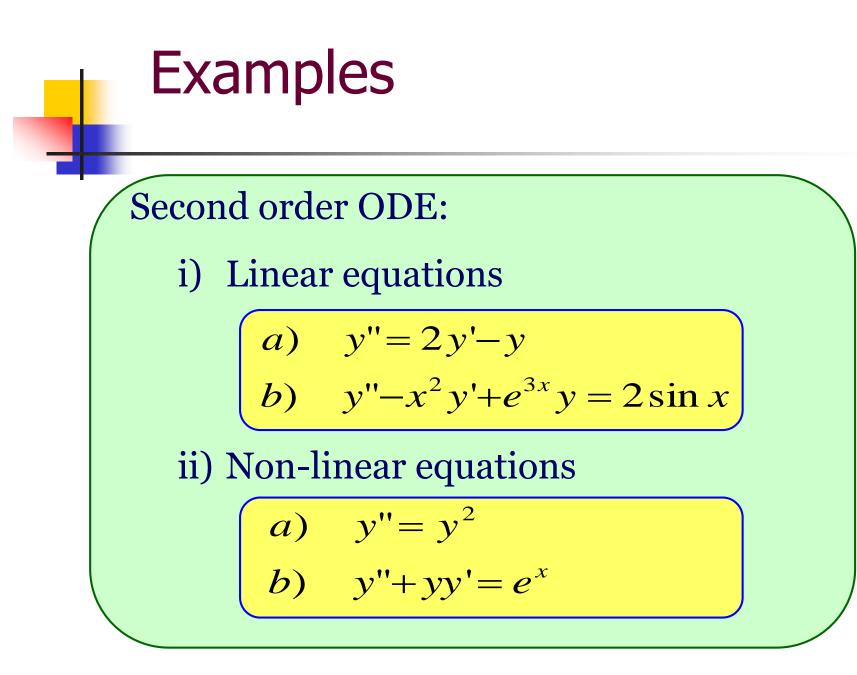
Definition

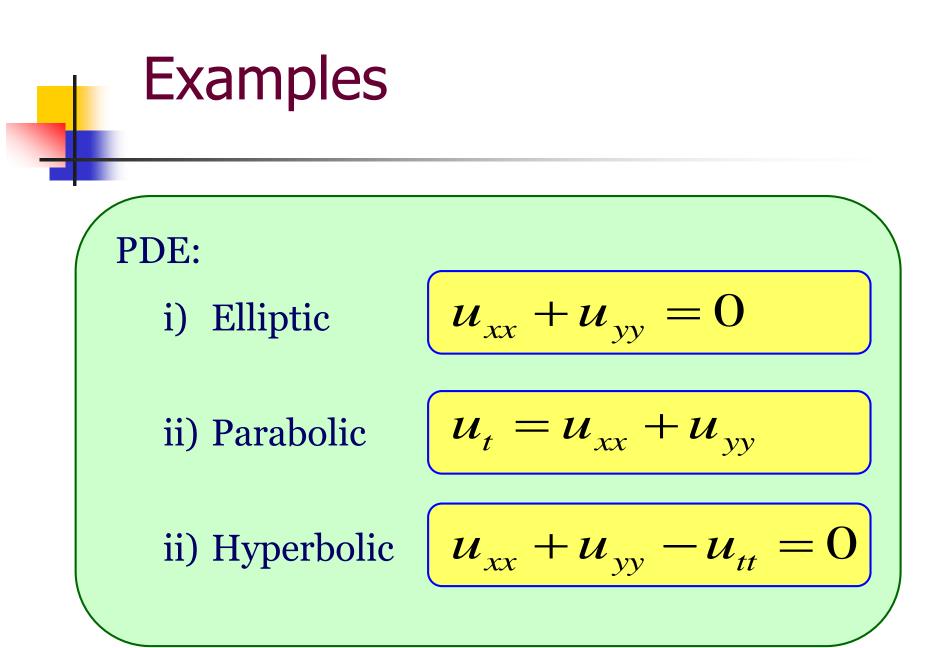


Definition

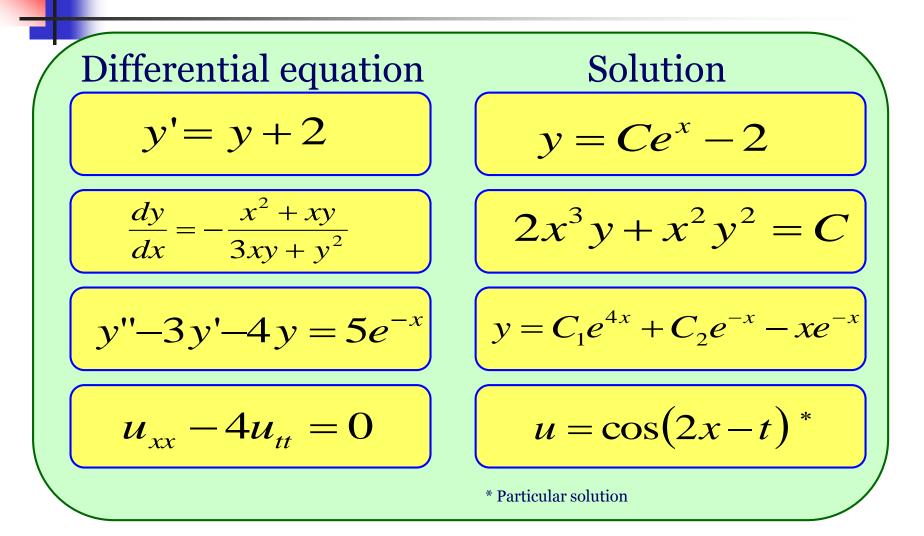
If there are more than one independent variable and the equation involves partial derivatives, then it is called **Partial Differential Equation.**

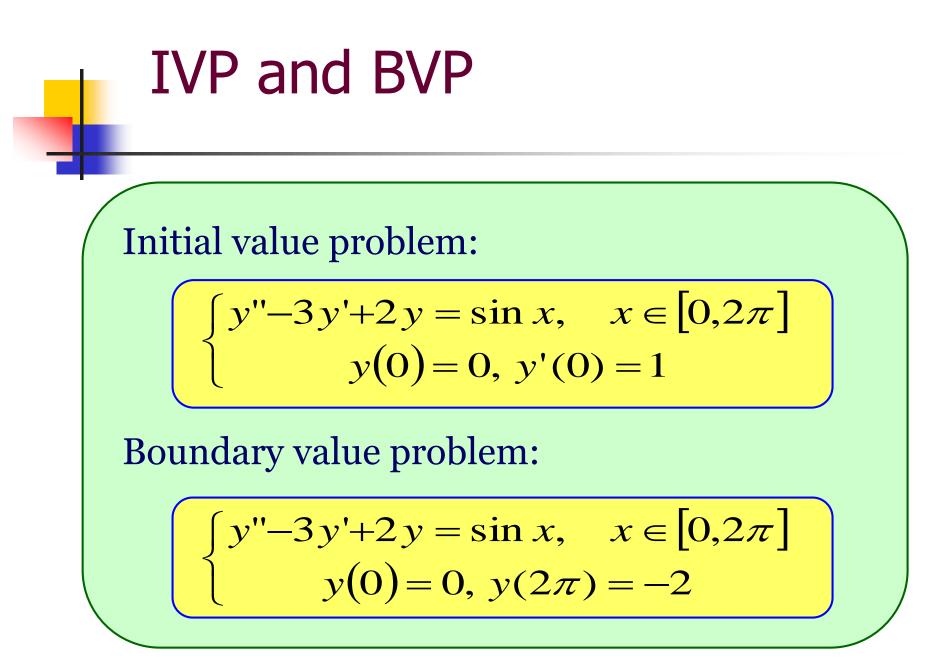


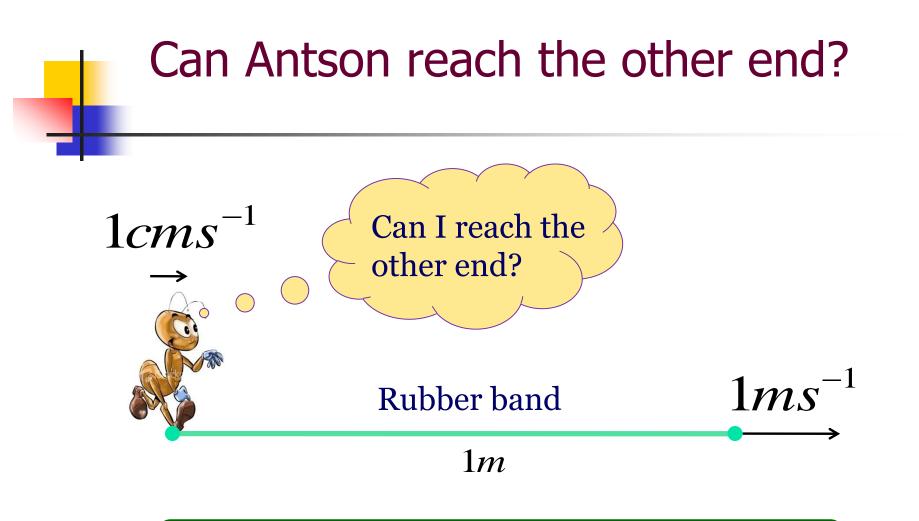




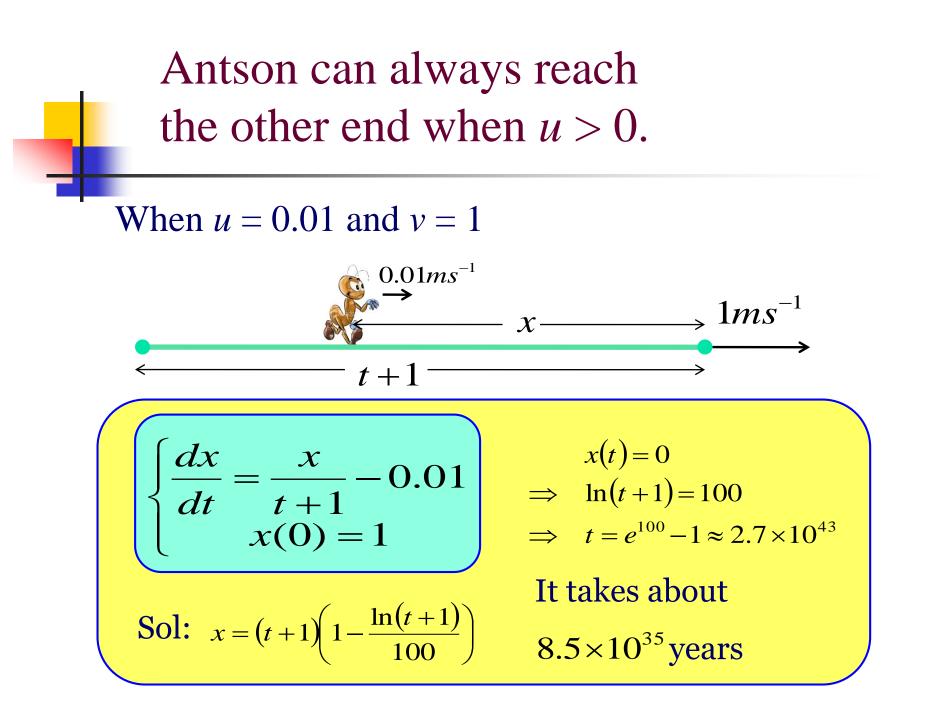
Solution







Can Antson reach the other end?

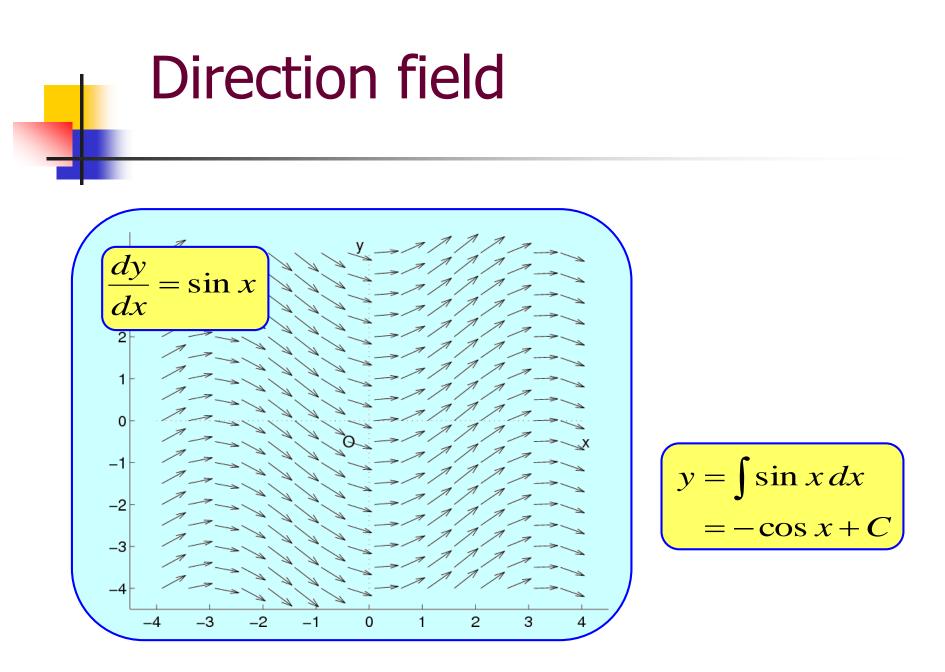


First order equation

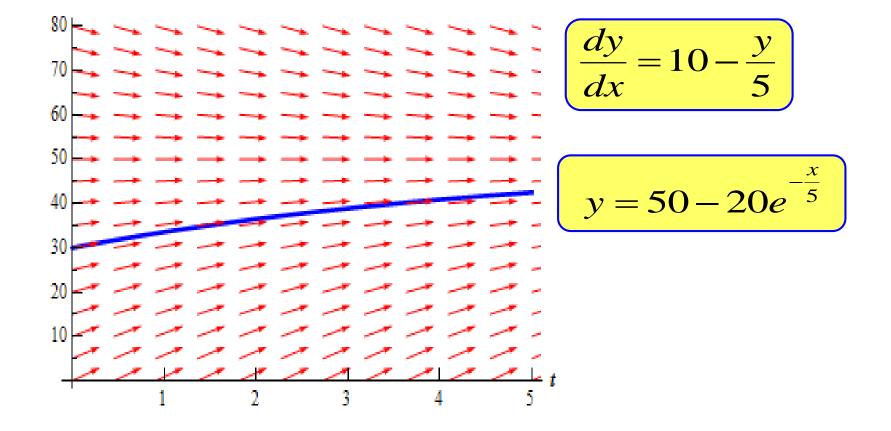
The first order ODE

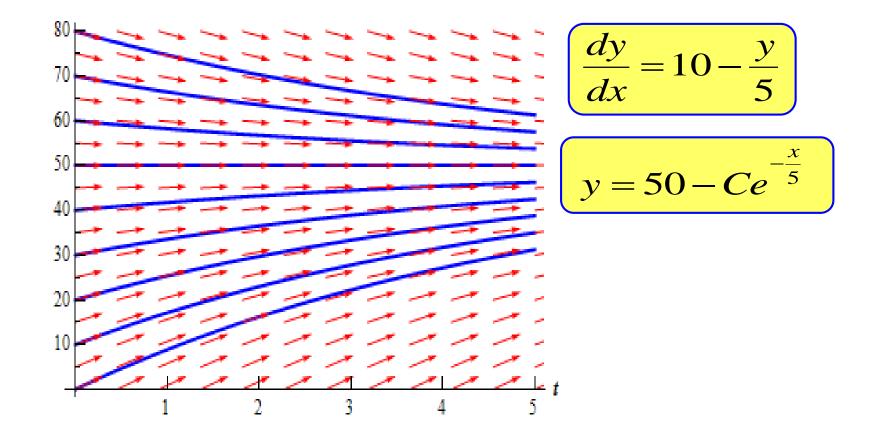
$$\frac{dy}{dx} = f(x, y)$$

can be interpreted as a direction field. The integral curves are solutions of the equation.

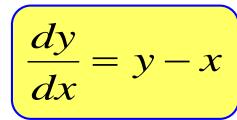


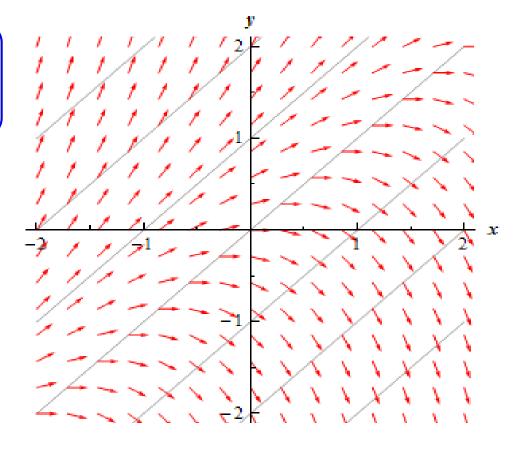
$$\frac{dy}{dx} = 10 - \frac{y}{5}$$

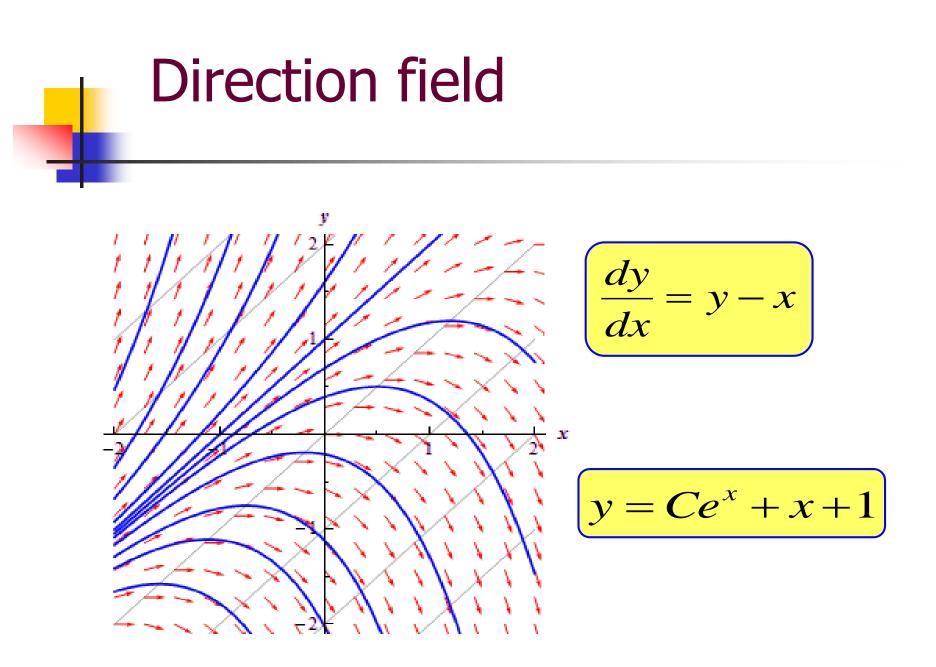




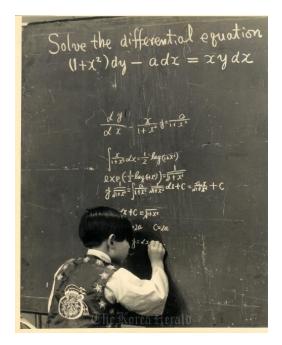
Direction field







Kim Ung Yong: Korean prodigy, born 3 March 1962



2 Nov 1967, Fuji TV Japan